Jawaban Grafik fungsi kuadrat. f\left (x\right)=x^2-6x+7. dapat diperoleh dengan menggeser grafik fungsi kuadrat. f\left (x\right)=x^2. ke arah. A. Kanan pada sumbu x sejauh 2 satuan, dan bawah pada sumbu y sejauh 3 satuan. B. Kiri pada sumbuxsejauh 3 satuan, dan bawah pada sumbuysejauh 2 satuan. Unduh PDF Unduh PDF Grafik sebuah fungsi adalah sebuah representasi visual dari sifat sebuah fungsi pada diagram x-y. Grafik bisa membantu kita memahami aspek-aspek berbeda dari sebuah fungsi, yang bisa jadi sulit dipahami dengan hanya melihat fungsi itu sendiri. Anda bisa menggambar grafik dari ribuan persamaan, dan masing-masing memiliki rumus yang berbeda satu sama lain. Artinya, selalu ada cara untuk menggambar sebuah fungsi jika Anda melupakan langkah seharusnya untuk menggambar fungsi tertentu. 1 Mengenali fungsi linier sebagai sebuah garis sederhana, seperti . Pada sebuah persamaan linier ada satu variabel dan satu konstanta, yang dituliskan dengan , tanpa tanda pangkat, akar, dan lain-lain. Jika Anda menemukan sebuah persamaan sederhana seperti ini, mudah untuk menggambarkannya. Contoh lain persamaan linier misalnya 2Menggunakan konstanta untuk menentukan titik potong pada sumbu y. Titik potong sumbu y adalah tempat di mana fungsi memotong sumbu y pada grafik. Dengan kata lain, titik ini adalah titik di mana . Jadi, untuk menemukannya, kita memasukkan angka 0 pada x, sehingga menyisakan konstantanya saja. Pada contoh sebelumnya, , titik potong pada sumbu y adalah 5, atau koordinat 0,5. Tandai titik ini pada grafik. 3Mencari gradien garis dari angka sebelum variabel. Pada contoh di atas, , gradiennya adalah "2". Karena angka 2 terletak persis sebelum variabel pada persamaan, yaitu "x". Gradien adalah ukuran seberapa miring garis, atau seberapa jauh garis naik ke kiri atau kanan. Semakin besar gradien semakin tegak garisnya. 4 Ubah gradien ke dalam bentuk pecahan. Gradien adalah ukuran kemiringan, dan kemiringan diukur dengan membandingkan selisih naik atau turun dengan selisih ke kanan atau kiri. Gradien adalah selisih vertikal dibagi selisih horizontal. Seberapa jauh garis bergerak "vertikal" naik dan seberapa jauh garis bergerak "horizontal" maju? Misalnya, gradien 2 dapat dibaca sebagai . Jika gradien negatif, artinya garis menurun ke arah kanan. 5Dimulai dari titik potong sumbu y, ikuti jumlah angka "naik" dan "turun" untuk mendapatkan titik lainnya. Begitu Anda mendapatkan kemiringannya, gunakan untuk menggambar fungsi linier yang bersangkutan. Mulailah dari titik potong sumbu y, yaitu 0,5, lalu naik 2, dan ke kanan 1. Tandai koordinat 1,7. Cari 1 -2 titik lagi untuk mendapatkan gambaran garis. 6Gunakan penggaris untuk menghubungkan titik-titik dan gambar fungsi linier tersebut. Untuk menghindari kesalahan dalam mensketsa, cari dan hubungkan paling tidak tiga titik yang berbeda, meskipun dua titik sebenarnya sudah cukup. Inilah gambar dari persamaan linier yang Anda cari! Iklan 1Tentukan fungsi. Tentukan fungsi dalam bentuk seperti fx, di mana y adalah 'range', dan x adalah 'domain', dan f adalah nama fungsi. Sebagai contoh, y = x+2, di mana fx = x+2. 2Gambar garis vertikal dan horizontal pada sebuah kertas. Garis horizontal adalah sumbu x. Garis vertikal adalah sumbu y. 3Beri angka pada grafik Anda. Beri angka pada sumbu x dan y dengan jarak yang sama. Untuk sumbu x, angkanya positif di sebelah kanan dan negatif di sebelah kiri. Untuk sumbu y, angkanya positif di atas dan negatif di bawah. 4 Hitung nilai y untuk 2-3 nilai x. Misalkan fungsinya adalah fx = x+2. Hitung beberapa nilai 'y dengan memasukkan beberapa nilai x yang terlihat pada sumbu ke dalam fungsi. Untuk persamaan yang lebih rumit, Anda bisa menyederhanakan fungsi dengan mengisolasi satu variabel terlebih dahulu. -1 -1 + 2 = 1 0 0 +2 = 2 1 1 + 2 = 3 5Gambar grafik untuk tiap pasangan berurutan. Buat garis lurus imajiner vertikal pada tiap angka sumbu x dan horizontal pada tiap angka sumbu y. Titik tempat garis-garis ini berpotongan adalah titik pada grafik. 6Hapus garis imajiner. Begitu Anda selesai menggambar seluruh titik, Anda bisa menghapus garis imajiner tersebut. Catatan grafik fx = x adalah sebuah garis yang paralel dengan garis ini melalui titik asal 0,0, tetapi fx = x+2 bergeser dua unit ke atas searah sumbu y pada diagram karena ada +2 pada persamaan.[2] Iklan 1 Ketahui cara membuat grafik persamaan pada umumnya. Masing-masing grafik memiliki cara penggambaran sendiri-sendiri, terlalu banyak untuk dibahas semuanya di sini. Jika Anda mengalami kesulitan, dan Anda tidak bisa mengira-ngira, lihatlah artikel di bawah ini Menggambar Fungsi Kuadrat Menggambar Fungsi Rasional Menggambar Fungsi Logaritma Menggambar Grafik Pertidaksamaan bukan fungsi, tetapi masih merupakan informasi penting. 2 Cari terlebih dahulu akar persamaan. Akar persamaan, atau titik potong pada sumbu x, adalah titik di mana grafik memotong sumbu horizontal. Meskipun tidak semua grafik memiliki akar, sebagian besar grafik memilikinya, dan mencari akar adalah langkah pertama dalam menyelesaikan persamaan. Untuk menemukan akar persamaan, buat persamaan menjadi nol dan pecahkan. Misalnya 3 Cari dan tandai asimtot horizontal, atau nilai yang tidak mungkin dicapai oleh fungsi, dengan garis putus-putus. Pada titik-titik ini grafik tidak memiliki nilai, misalnya seperti pembagian dengan angka nol. Jika persamaan memiliki variabel dalam pecahan, seperti , mulailah dengan memasukkan angka nol pada penyebut. Nilai-nilai yang menjadi nol dapat diberi garis putus-putus misalnya, garis putus-putus pada x=2 dan x=-2, karena Anda tidak bisa membagi dengan angka nol. Namun pecahan bukan satu-satunya penyebab asimtot. Anda membutuhkan sedikit akal untuk menemukannya; 4 Masukkan beberapa angka untuk mendapatkan beberapa titik pada grafik. Ambil beberapa angka sembarang untuk x dan pecahkan persamaannya. Lalu hubungkan titik-titik tersebut pada grafik Anda. Semakin rumit grafik yang Anda gambar, semakin banyak titik yang Anda butuhkan. Pada umumnya, titik yang paling mudah dipakai adalah -1, 0 dan 1, meskipun Anda bisa menambah 2-3 titik lagi di kiri dan kanan titik nol untuk mendapatkan sebuah grafik yang baik.[5] Untuk persamaan , Anda bisa memasukkan angka -1,0,1, -2, 2, -10, dan 10. Angka ini bisa memberikan jangkauan angka yang cukup baik sebagai perbandingan. Cerdiklah dalam memilih angka. Misalnya, jika Anda menyadari bahwa menggunakan angka negatif tidak banyak pengaruhnya - Anda tidak harus mencoba angka -10, misalnya, karena hasilnya sama saja dengan 10. 5 Petakan perilaku fungsi di ujung grafik untuk melihat bagaimana bentuknya secara luas. Hal ini membantu Anda untuk memahami ke mana arah grafik, terutama bila ada asimtot vertikal. Misalnya - Anda tahu bahwa grafik ukurannya sangat besar. Perbedaan hanya satu angka pada "x" misalnya antara 1 juta dan 1 juta tambah 1 bisa membuat perbedaan yang besar pada y. Ada beberapa cara untuk menguji sifat pada ujung grafik, misalnya 6Hubungkan titik-titiknya, jangan menyentuh asimtot dan ikuti sifat pada ujung grafik dalam mendapatkan fungsi. Begitu Anda mendapatkan 5-6 titik, asimtot, dan sifat dari ujung grafik, gabungkan semua untuk mendapatkan rekaan grafik tersebut. 7Menggambar grafik dengan kalkulator grafik. Kalkulator grafik adalah sebuah komputer saku yang dapat menggambar grafik dari sebuah persamaan. Anda bisa mencari titik tertentu, gradien garis, dan menggambar persamaan sulit dengan mudah. Masukkan persamaan pada bagian grafik biasanya ditandai dengan tombol "Fx = " dan tekan tombolnya. Iklan Menggunakan kalkulator grafik adalah cara latihan yang baik. Cobalah menggambar grafik secara manual, lalu gunakan kalkulator untuk mendapatkan gambar grafiknya dan cocokkan dengan gambar Anda. Jika Anda benar-benar tidak tahu apa yang harus dilakukan, cobalah memasukkan angka. Anda bisa menggambarkan seluruh fungsi dengan cara ini jika Anda memasukkan kombinasi angka yang sangat banyak. Iklan Tentang wikiHow ini Halaman ini telah diakses sebanyak kali. Apakah artikel ini membantu Anda?
Bagaimanakahmenggambar grafik fungsi untuk 0 ≤ x ≤ 2π? Apabila kita telah mengetahui grafik fungsi y = sin x, maka dengan teknik-teknik yang diajarkan berikut ini, grafik fungsi tersebut dapat dengan mudah digambarkan. Sebelum kita mencari jawaban untuk soal tersebut, mari kita pelajari terlebih dahulu "teori-teori" berikut. [P1] Mendapatkan y = sin kx []
SMP/MTsAYU ARDHILLA RAHMA, PPG DALJAB 2021 UNY Fungsi Kuadrat, dan Grafik Fungsi Kuadrat Petunjuk Teknis Pengisin LKPD 1. Isilah identitasmu denganlengkap dan jelas 2. Kerjakan LKPD berikut dengan baik dan benar 3. Ikuti petunjuk untuk mengerjakan dan tulislah jawaban pada tempat yang telah disediakan! NAMA .............................................................................. KELAS ..............................................................................FUNGSI KUADRATA. Kompetensi Dasar dan Indikator PencapaianNo. Kompetensi Dasar Indikator Pencapaian Kompetensi1. Menjelaskan Menjelaskan definisi fungsi kuadratfungsi kuadrat Menentukan nilai-nilai fungsi kuadratdengan pada tabelmenggunakan Menentukan pembuat nol daritabel, persamaan, persamaan kuadratdan grafik Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat2. Menyajikan Membuat tabel pasangan nilai variabelfungsi kuadrat dan nilai fungsi kuadratnyamenggunakan Menggambar sketsa grafik fungsitabel, kuadratpersamaan, dan Menentukan persamaan fungsi kuadratgrafik. jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat B. Tujuan PembelajaranMelalui proses mengamati, menanya, mengumpulkan dan mengolahinformasi serta mengkomunikasikan hasil mengolah informasi dalampenugasan individu dan kelompok, peserta didik dapat1. Menjelaskan definisi fungsi kuadrat dengan benar2. Membuat tabel pasangan nilai variabel dan nilai fungsi kuadratnya dengan tepat3. Menentukan pembuat nol dari persamaan kuadrat dengan tepat4. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan tepat5. Menghubungkan titik-titik koordinat sebagai grafik fungsi kuadrat dengan tepat6. Menggambar sketsa grafik fungsi kuadrat dengan benar7. Menjelaskan pengaruh dari koefisien x2 pada fungsi kuadrat fx terhadap karakteristik dari grafik fungsi fx dengan tepat8. Menentukan fungsi kuadrat jika diketahui grafiknya, titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dengan tepat KB1 Menentukan Nilai-nilai suatu Fungsi Kuadrat Tujuan Pembelajaran Melalui proses penemuan dan diskusi kelompok, peserta didik dapat 1. Menjelaskan definisi fungsi kuadrat dengan benar 2. Menentukan nilai-nilai fungsi kuadrat pada tabel secara tepat 3. Menentukan pasangan koordinat dari fungsi kuadrat pada bidang Cartesius dengan benar 4. Menghubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepat Alat dan Bahan  Alat Pulpen atau Pensil, Penghapus, Penggaris dan pensil atau spidol warna.  Bahan Buku kotak-kotak. Alokasi Waktu 40 menit Prosedur Kerja 1. Sediakan alat dan bahan serta media yang akan digunakan dalam menyelesaikan LKPD 2. Kerjakan tugas yang ada dalam LKPD secara mandiri. 3. Amati dan analisislah setiap kegiatan yang diberikan dengan Bentuk umum fungsi kuadrat y = ax2 + bx+ c, dengan a ≠ 0, x, y є R. Fungsi kuadrat dapat pula dituliskan sebagai fx = ax2 + bx+ Dalam membuat grafik fungsi kuadrat dapat dilakukan dengan cara • Menentukan nilai-nilai fungsi kuadrat dengan cara mensubstitusi nilai variabel x • Buat tabel fungsi kuadrat • Tempatkan titik-titik koordinat dalam tabel pada bidang koordinat • Hubungkan titik-titik koordinat sebagai fungsi kuadrat secara tepatKegiatan 1. Menggambar Grafik Fungsi y = ax2Gambarlah grafik fungsi kuadrat berikuta. y = x2b. y = -x2c. y = 2x2Penyelesaian Langkah-langkahnya adalah sebagai berikut1. Menentukan nilai-nilai dari Fungsi Kuadrat yang adaa. Fungsi Kuadrat y = x2 b. Fungsi Kuadrat y = -x2Jika x = -3 maka y = …..2 = ….. Jika x = -3 maka y = -…..2 = ….. x = -2 maka y = …..2 = ….. x = -2 maka y = -…..2 = ….. x = -1 maka y = …..2 = ….. x = -1 maka y = -…..2 = ….. x = 0 maka y = …..2 = ….. x = 0 maka y = -…..2 = ….. x = 1 maka y = -…..2 = ….. x = 1 maka y = …..2 = ….. x = 2 maka y = -…..2 = ….. x = 2 maka y = …..2 = ….. x = 3 maka y = -…..2 = ….. x = 3 maka y = …..2 = …..2. Melengkapi Tabel berdasarkan Nilai-nilai Fungsi Kuadrat yang ada = = − x y x,y x y x,y-3 -3-2 -2-1 -1001122331. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda2. Gambarlah grafik dengan menghubungkan titik-titik koordinat tersebut. Ket Kurva y = x2 ditandai dengan warna biru Kurva y = -x2 ditandai dengan warna hitam Kurva y = 2x2 ditandai dengan warna merahKesimpulan Dari kegiatan 1 di atas, kesimpulan apa yang dapat kamu peroleh? Nilai a pada fungsi = 2 akan mempengaruhi bentuk grafiknya Jika a > 0 maka grafiknya akan……………………….. Jika a 0, berarti grafik fungsi kuadrat berbentuk parabola yangterbuka ke ……..b. Sumbu simetri = − 2 … = −2…=⋯Nilai optimum 2 − 4 = − 4 = − …2 − 4 … × … 4… …−⋯ = − … = ⋯Jadi titk optimim adala , = … , … TUGAS MANDIRI Diketahui fungsi kuadrat fx = -2x 2 + 7x – 3 Tentukan a. bentuk grafik fungsi kuadrat b. sumbu simetri, nilai optimum, dan titik optimum KB3 Membuat Sketsa Grafik Fungsi KuadratTujuan PembelajaranMelalui proses mengamati, menanya, mengumpulkan dan mengolah informasiserta mengkomunikasikan hasil mengolah informasi dalam penugasan individudan kelompok, peserta didik dapat 1. Menentukan pembuat nol dari persamaan kuadrat 2. Menyebutkan langkah-langkah menggambar grafik fungsi kuadrat dengan benar 3. Menggambar sketsa grafik fungsi kuadrat dengan benarAlokasi waktu 30 MenitAlat dan bahan1. Alat Pulpen atau Pensil, Penghapus dan Penggaris2. Bahan LKPDProsedur Kerja  Amati langkah-langkah untuk membuat sketsa grafik Fungsi Kuadrat  Kerjakan tugas yang ada dalam LKPD secara mandiriTeoriLangkah-langkah yang diperlukan untuk membuat sketsa grafik fungsi kuadrat = 2 + + adalah sebagai berikut Menentukan titik potong dengan sumbu X, diperoleh jika = 0 Menentukan titik potong dengan sumbu Y, diperoleh jika = 0 Menentukan persamaan sumbu simetri = − 2  Menentukan nilai optimum grafik = − 2−4 4  Menentukan koordinat titik optimum , = − , − 2−4 2 4 Contoh soalBuatlah sketsa grafik fungsi kuadrat y = x2 + 4x - 5Penyelesaiankarena a > 0, berarti grafik fungsi kuadrat berbentuk parabola yangterbuka ke ……..a. Titik potong dengan sumbu X, jika y = 0 = 2 + 4 – 50 = + ⋯ − ⋯ Sehingga dperoleh, + ⋯ = 0 atau − ⋯ = 0Dengan = ⋯ = ⋯Dan memotong sumbu X di titik ⋯ ,0 dan ⋯ ,0b. Titik potong dengan sumbu Y, jika x = 0 = 2 + 4 − 5 = ⋯2 + 4 ⋯ − 5 = −5 Dan memotong sumbu Y di titik 0, −5c. Persamaan sumbu simetri − ⋯ = 2 = ⋯ = ⋯d. Nilai optimum 2 − 4 = − 4 ⋯−4⋯×⋯ = − 4 ⋯ ⋯ = − ⋯ = ⋯e. Koordinat titik optimum , = ⋯ , ⋯ TUGAS MANDIRI Buatlah sketsa grafik fungsi kuadrat y = -x2 - 2x+ 35 dengan menuliskan langkah- langkahnya terlebih dahulu! KB4 Menentukan Persamaan Fungsi KuadratTujuan Pembelajaran Melalui proses mengamati, menanya, mengumpulkan dan mengolah informasi serta mengkomunikasikan hasil mengolah informasi dalam penugasan individu dan kelompok, peserta didik dapat Menentukan fungsi kuadrat jika sudah diketahui grafiknya dan dikerjakan secara teliti. Menentukan fungsi kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik pada persamaan kuadrat dan dikerjakan secara waktu 30 menitProsedur Kerja  Pelajari dan pahamilah cara untuk menentukan Fungsi Kuadrat jika diketahui titik puncak, titik potong, sumbu simetri atau beberapa titik.  Kerjakan tugas yang ada dalam LKPD secara mandiriTeori  Jika diketahui titik puncaknya adalah , maka rumus fungsi kuadrat nya adalah = − 2 + Dengan nilai a didapat dari mensubstitusi titik x,y yang dilalui.  Jika titik ppotong sumbu x adalah 1, 0 dan 2, 0, maka rumus fungsi kuadratnya adalah = − 1 − 2 Dengan nilai a didapat dari mensubstitusikan titik x,y yang diketahuiContoh soal 1. Sebutkan grafik fungsi kuadrat memotong sumbu-X di A1,0 dan B2,0. Apabila grafik tersebut juga melalui titik 0,4, tentukanlah persamaan fungsi kuadratnya! Penyelesaian Titik potong A1,0 dan B2,0 Sehingga 1 = ⋯ dan 2 = ⋯ Persamaan fungsi kuadrat dapat dinyatakan sebagai = − 1 − 2 = − ⋯ − ⋯ Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 0, 4. Artinya untuk nilai = 0 diperoleh = ⋯ = − ⋯ − ⋯ 4 = 0 − ⋯ 0 − ⋯ 4 = ⋯ ⋯ 4 = ⋯ ⋯ = 4 = ⋯ Dengan demikian, persamaan fungsi kuadratnya adalah = − ⋯ − ⋯ = ⋯ − ⋯ − ⋯ = ⋯ 2 − ⋯ + ⋯ = ⋯ 2 − ⋯ + ⋯2. Sebuah grafik fungsi kuadrat mempunyai titik puncak di koordinat 1,2. Apabila grafik tersebut juga melalui titik 2,3, tentukan persamaan fungsi kuadratnya! Penyelesaian Titik puncak 1,2, maka , = ⋯ , ⋯ Persamaan fungsi kuadratnya = − 2 + = − ⋯ 2 + ⋯ Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 2,3. Artinya untuk nilai = 2 diperoleh = ⋯ = − ⋯ − ⋯ ⋯ = 2 − ⋯ 2 − ⋯ ⋯ = ⋯ ⋯ ⋯ = ⋯ ⋯ = ⋯ = ⋯ Dengan demikian, persamaan fungsi kuadratnya adalah = − ⋯ 2 + ⋯ = ⋯ ⋯ − ⋯ 2 + ⋯ = ⋯ ⋯ 2 − ⋯ + ⋯ + ⋯ = ⋯ 2 − ⋯ + ⋯ + ⋯ = ⋯ 2 − ⋯ + ⋯PenilaianLatihan Soal1. Gambarlah grafik y = x2+ x –2 dengan terlebih dahulu melengkapi tabel nilai-nilai fungsiberikut ini!x y = x2 + x - 2 x,y-3 -32 + -3 - 2 = 4 -3,4-2-101232. Diketahui fungsi kuadrat fx = 5x 2 – 7x – 6 Tentukana. bentuk grafik fungsi kuadrat b. sumbu simetri, nilai optimum, dan titik optimum3. Buatlah sketsa menggambar grafik fungsi kuadrat fx = x2 – 3x + 2 dengan langkah-langkah yang tepat!............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
Fungsikuadrat adalah suatu fungsi yang berbentuk y=ax2+bx+c ,dengan a≠0,x,yϵR. Tujuan pembelajarannya adalah siswa mampu mengidentifikasi pengertian fungsi kuadrat dan menyajikan fungsi kuadrat menggunakan tabel, persamaan, dan grafik. Dalam menggambar grafik, siswa harus mengetahui langkah-langkahnya.
KATA PENGANTARPuji syukur kepada Allah SWT, karena atas rahmat-Nya, penulis dapat menyelesaikan bukuajar berjudul Fungsi’ dengan lancar. Buku ini ditulis untuk membantu pengajar atau siswayang membutuhkan berbagai materi dan juga pengayaan tentang juga mengucapkan terima kasih kepada berbagai pihak yang sudah membantusehingga buku ajar ini selesai dengan sangat baik, yaitu 1. Ibu Hastri Rosiyanti, M. Pmat. Selaku Dosen pembimbing PPG dalam jabatan kategori 1 gelombang 2 yang telah memberikan bimbingan dan arahan dalam penyusunan buku ajar ini. 2. Bapak GP. Santoso, selaku guru pamong PPG dalam jabatan kategori 1 gelombang 2 yang telah memberikan masukan dalam penyusunan buku ajar ini. 3. Bapak Dr. H. Dedi Kenedi, selaku Kepala SMAN 1 Astanajapura yang telah memberikan dukungan penuh dalam pelaksanaan PPG dalam jabatan kategori 1 gelombang 2 4. Bapak/Ibu guru di sekolah yang selalu memberikan semangat dan motivasi dalam penyusunan buku ajar ini. 5. Teman – teman dalam jabatan kategori 1 gelombang 2 yang saling memberikan semangat dan motivasi dalam penyusunan buku ajar iniPenulis menyadari masih banyak kekurangan dalam penulisan buku ajar ini, untuk itupenulis mengharapkan saran dan kritik membangun untuk perbaikan. Semoga buku in idapat bermanfaat bagi penulis dan pembaca. Cirebon, 28 November 2022 Penulis,DAFTAR ISICoverKata Pengantar ...............................................................................................iDaftar Isi.........................................................................................................iiPeta Konsep ...................................................................................................1Kompetensi Dasar dan IPK ..............................................................................2Tujuan Pembelajaran dan Deskripsi Materi ....................................................3Definisi Fungsi kuadrat ...................................................................................4Menggambar grafik fungsi kuadrat .................................................................4Mencari domain .............................................................................................9Rangkuman ....................................................................................................10Daftar Pustaka ................................................................................................11 iiPETA KONSEP 123Fungsi KuadratFungsi kuadrat adalah suatu fungsi yang memiliki variabel dengan pangkat tertinggi umum fungsi kuadrat adalahGrafik Fungsi KuadratLangkah-langkah menggambar grafik fungsi Menentukan titik potong dengan sumbu X. Titik potong dengan sumbu X diperoleh jika y = 0 atau 2 + + 2. Menentukan titik potong dengan sumbu Y. Titik potong dengan sumbu Y diperoleh jika x = Menentukan koordinat titik Persamaan sumbu simetri = − 2 b. Nilai ekstrem = − 4 KEGIATAN 1 Menggambar grafik fungsi kuadrat yang paling sederhana, yakni ketika b = c = mendapatkan grafiknya kamu dapat membuat gambar untuk beberapa nilai x dansubsitusikannya pada fungsi y = ax2 , misalkan untuk a = 1, a = 2, dan a = -2Untuk mendapatkan grafik suatu fungsi kuadrat , kamu terlebih dahulu harus mendapatkanbeberapa titik koordinat yang dilalui oleh fungsi kuadrat Melengkapi tabel y = x2 x,y y = 2x2 x,y y =-2x2 x,y-3 -32 -3,9 -3 -32 -3,18 -3 -32 -3,-18-2 -22 -2,4 -2 -22 -2,8 -2 -22 -2,-8-1 -12 -1,1 -1 -12 -1,2 -1 -12 -1,-20 02 0,0 0 02 0,0 0 02 0,01 12 1,1 1 12 1,2 1 12 1,-22 22 2,4 2 22 2,8 2 22 2,-83 32 3,9 3 32 3,18 3 32 3,-18 42. Tempatkan titik-titik koordinat yang berada dalam tabel pada bidang koordinat gunakan tiga warna berbeda3. Sketsa grafik dengan menghubungkan titik-titik koordinat tersebut Ket Kurva y = x2 ditandai dengan warna biru Kurva y = 2x2 ditandai dengan warna hijau Kurva y = -2 x2 ditandai dengan warna merahNilai a pada fungsi y = ax2 akan mempengaruhi bentuk grafiknya - Jika a > 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin “kurus” - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memiliki titik puncak minimum. Jika a 0 maka grafiknya akan terbuka ke atas - Jika a 0 dan nilai a makin besar maka grafiknya akan semakin “kurus” - Jika a 0 dan bergeser c satuan ke bawah jika c 0 maka grafiknya y = ax2 + bx + c memilikititik puncak minimum. Jika a < 0 maka grafik y = ax2 + bx + c memiliki titik Nilai c pada grafik y = ax2 + bx + c menunjukkan titik perpotongan grafik fungsi kuadrat tersebut dengan sumbu – Y, yakni pada koordinat c,0.Soal EvaluasiGambarlah grafik fungsi kuadrat = 2 + 2 – 3! 6DAFTAR PUSTAKAKemdikbud. 2017. Buku Paket matematika wajib kelas X. Jakarta Pusat Kurikulum 2016. Matematika untuk SMA/MA kelas X semester 1. Jakarta ErlanggaKurniasari Yeni, Asep Ikin Sugandi , Ratna Sariningsih. Analisis Kesalahan Siswa Kelas X DalamMenyelesaikan Soal Materi Fungsi Kuadrat Berdasarkan Prosedur Kastolan. Jurnal PembelajaranMatematika Inovatif Volume 4, No. 6, November 2021. 7
MenggambarGrafik Fungsi linear: y = mx + c Cari titik potong pada sumbu x dan y. Fungsi kuadrat: y = ax2 + bx + c Cari titik potong pada sumbu x dan y Cari sumbu simetri: xs = -b/2a Fungsi kubik: Turunan pertama = 0 Cek tanda + - + - Sketsa grafiknya Fungsi linear: y = mx + c Cari titik potong pd sb. x & y Contoh: gambarkan y = 8 - 2x
Grafikfungsi konstan y = f(x) dengan f(x) = c adalah garis lurus yang sejajar sumbu X untuk c ≠ 0 dan berimpit dengan sumbu X jika c = 0 Contoh : Fungsi f: x → 3 2). Fungsi Identitas Fungsi R→R yang didefinisikan sebagai: I : x→ x disebut fungsi identitas Grafik fungsi identitas y = x adalah garis lurus yang melalui O(0,0). f(1) = 1
LangkahLangkah Dalam Menggambar Grafik Fungsi Kuadrat Y F X 1 Contoh Soal Dan Pembahasan Fungsi Kuadrat Guru Ilmu Sosial Mtk Docx Fungsi Kuadrat Dan Grafiknya Langkah2 Menggambar Grafik Y Ax2 Bx C Adalah Sebagai Berikut 1 Titik Potong Sumbu X Y 0 2 Titik Potong Sumbu Course Hero
a≠ 0. Grafik fungsi kuadrat berbentuk parabola dengan persamaan y = ax2 + bx + c. Beberapa langkah yang ditempuh untuk menggambar grafik fungsi kuadrat adalah: a. Titik potong grafik dengan sumbu x, dengan mengambil y = 0 b. Titik potong grafik dengan sumbu y, dengan mengambil x = 0 c. Sumbu simetri grafik yaitu x = - b 2a d.
.
  • w0bbqezawd.pages.dev/318
  • w0bbqezawd.pages.dev/261
  • w0bbqezawd.pages.dev/230
  • w0bbqezawd.pages.dev/103
  • w0bbqezawd.pages.dev/204
  • w0bbqezawd.pages.dev/106
  • w0bbqezawd.pages.dev/243
  • w0bbqezawd.pages.dev/271
  • w0bbqezawd.pages.dev/347
  • menggambar grafik fungsi y ax2